THE JOURNAL

OF THE

American Chemical Society

REPORT OF THE INTERNATIONAL COMMITTEE ON ATOMIC WEIGHTS. 1908.

Received November 6, 1907.

Since the preparation of our report for 1907, several important determinations of atomic weights have been published. They are, briefly, as follows:

Nitrogen.—Richards and Forbes¹ have redetermined the ratio between Ag and NO₃, as shown in the composition of silver nitrate. The ratio found, with all corrections applied, is Ag: $NO_3 = 100:57.479$. Hence, if Ag = 107.930, N = 14.037; and if N = 14.008, Ag = 107.880. In short, the higher atomic weight hitherto assigned to silver is inconsistent with the lower value for nitrogen as found in several recent investigations.

Sulphur.—Richards and Jones² have measured the ratio between Ag₂SO₄ and AgCl. From the data obtained, if Ag = 107.930, S = 32.113, a value much higher than that commonly accepted. If Ag = 107.880, then S = 32.069, which is near the figure given in our former tables. Additional evidence relative to this constant is much to be desired, for it influences the determination of many other atomic weights, especially those of the rare-earth metals.

Potassium.—From the ratios Ag: KCl and AgCl: KCl, Richards and Staehler³ find K = 39.114, when Ag = 107.930 and Cl = 35.473. From the corresponding bromide ratios, with Br = 79.953, Richards and Mueller⁴ find K = 39.1143 and 39.1135. The final result of both researches is K = 39.114, a distinct lowering of the constant in question.

Manganese.--Atomic weight redetermined by Baxter and Hines,5 from

- ⁴ This Journal, 29, 639; and Z. anorg. Chem. 53, 423.
- ⁵ This Journal, 28, 1560; and Z. anorg. Chem., 51, 202.

¹ This Journal, 29, 808; and Z. anorg. Chem., 55, 34.

² This Journal, 29, 826; and Z. anorg. Chem., 55, 72.

³ This Journal, 29, 623; and Ber., 39, 3611.

analyses of the chloride and bromide. The mean of their very concordant determinations is Mn = 54.957, when Ag = 107.930.

Cobalt.—From new analyses of the chloride, Baxter and Coffin¹ find Co = 58.997, or 59 in round numbers. This confirms the earlier determinations by Richards and Baxter.

Indium.—Mathers,² from analyses of indium chloride, found In = 114.88. From the bromide, In = 114.86. The author recommends the adoption of the rounded-off value, 114.9, when Ag = 107.93, Cl = 35.473, and Br = 79.953.

Tellurium.—Norris,³ by twelve concordant reductions of the basic nitrate, 2TeO_2 .HNO₃ to TeO_2 , found the atomic weight of tellurium to be 127.48, when N = 14.01. With N = 14.04, Te = 127.64, which is in better agreement with other recent determinations. The true cause of the difference is not clear.

Neodymium.—Holmberg⁴ has redetermined the atomic weight of this element by synthesis of the sulphate from the oxide. In mean, when S = 32.06, Nd = 144.08. This is higher by 0.48 than the value given in our table.

Dysprosium.—In two series of determinations, based upon the ignition to oxide of the octohydrated sulphate, Urbain and Demenitroux' find for the atomic weight of dysprosium, values ranging between 162.29 and 162.75. In mean, Dy = 162.53.

Radium.—Madame Curie,⁶ in a series of three new determinations, has found a more precise value for the atomic weight of radium. Working with material more abundant and pure than that formerly analyzed, she found Ra = 226.18 when Ag = 107.8 and Cl = 35.4. With Ag = 107.93 and Cl = 35.45, Ra = 226.45. This number is higher than her earlier determination by more than a unit.

From the data here given, and from those cited in previous reports, it is evident that the entire table of atomic weights is in need of revision. The values assigned to K and Na are too high; those given to Cl and S are too low; and these constants affect the determinations of many others. They depend, however, upon the atomic weight of silver, which is probably, but not certainly, as low as 107.88. It is well known that work upon these fundamental constants is now nearing completion in several laboratories, notably under T. W. Richards, W. A. Noyes, and probably other investigators also. Within a few months it should be possible to

¹ This Journal, 28, 1580; and Z. anorg. Chem., 51, 171.

² This Journal, 29, 485; and Ber., 40, 1220.

^a This Journal, **28,** 1675.

⁴ Z. anorg. Chem., 53, 83.

⁵ Compt. rend., 143, 598.

⁶ Ibid., 145, 422. The atomic weight of radium is also under investigation by Thorpe.

enter upon a satisfactory revision of the table, a task which would be unsatisfactory, if undertaken now. It is true, as Brauner has suggested,¹ that the present table contains inconsistencies, but they are small in amount, and are due to inconsistencies in the original data from which the values are derived. In our next report we hope to recompute the entire table; but meanwhile, awaiting the completion of the researches which we know to be in progress, we prefer to leave the table practically

International Atomic Weights. 1908.

AluminumAl	27.I	MolybdenumMo	96.o
AntimonySb	120.2	NeodymiumNd	143.6
ArgonA	39.9	NeonNe	20.
ArsenicAs	75.0	NickelNi	58.7
Barium Ba	137.4	NitrogenN	14.01
BismuthBi	208.0	OsmiuniOs	191.0
BoronB	II .0	OxygenO	16.00
BromineBr	79.96	PalladiumPd	106.5
CadmiumCd	112.4	PhosphorusP	31.0
CaesiumCs	132.9	PlatinumPt	194.8
CalciumCa	40.I	PotassiumK	39.15
CarbonC	12.00	PraseodymiumPr	140.5
CeriumCe	140.25	RadiumRa	225.
ChlorineCl	35.45	RhodiumRh	103.0
ChromiumCr	52.1	RubidiumRb	85.5
CobaltCo	59.0	RutheniumRu	101.7
ColumbiumCb	94.	SamariumSa	150.3
CopperCu	63.6	ScandiumSc	44.I
DysprosiumDy	162.5	SeleniumSe	79.2
ErbiumEr	166.	SiliconSi	28.4
EuropiumEu	152.	SilverAg	107.93
FluorineF	19.0	SodiumNa	23.05
GadoliniumGd	156.	StrontiumSr	87.6
GalliumGa	70.0	SulphurS	32.06
GermaniumGe	72.5	TantalumTa	181.
GlucinumGl	9.I	TelluriumTe	127.6
GoldAu	197.2	TerbiumTb	159.2
HeliumHe	4.0	ThalliumTl	204 . I
HydrogenH	1.008	ThoriumTh	232.5
IndiumIn	115.	ThuliumTm	171.
IodineI	126.97	TinSn	119.0
IridiumIr	193.0	TitaniumTi	48.I
IronFe	55.9	TungstenW	184.0
KryptonKr	81.8	UraniumU	238.5
LanthanumLa	138.9	VanadiumV	51.2
LeadPb	206.9	XenonXe	128.
LithiumLi	7.03	VtterbiumYb	173.0
MagnesiumMg	24.36	VttriumY	89.0
Manganese	55.0	ZincZn	65.4
MercuryHg	200.0	ZirconiumZr	90.6

¹ Chem.-Ztg., May 11, 1907.

unchanged. A conservative policy seems to be safer than one of haste, and the delay of another year will do no harm. One exception to the rule may, however, be made. Dysprosium, with the atomic weight 162.5, may now be properly added to the list of the chemical elements, and we recommend its insertion in the table.

It is with the deepest regret that we record the loss, by death, in February last, of our distinguished colleague, Professor Moissan. The Chemical Society of Paris has designated Monsieur G. Urbain as his successor upon this Commission.

(Signed)

F. W. CLARKE, W. OSTWALD, T. E. THORPE, G. URBAIN.

THE CHOICE OF THE MOST PROBABLE VALUE FOR AN ATOMIC WEIGHT: THE ATOMIC WEIGHT OF HYDROGEN.¹

BY WILLIAM A. NOYES. Received December 6, 1907.

A large amount of material has been accumulated from which the atomic wieghts of the more important elements can be calculated. A very superficial examination of this material reveals the fact that the experimental results on which our knowledge of these constants is based, vary very greatly in their value and that many of the older determinations have been rendered practically worthless by recent work, which has been more careful and accurate.

As some of these new determinations affect the values for elements of such fundamental importance that a recalculation of the whole table of atomic weights will be necessary in the near future, it seems desirable to formulate some general principles to aid in the elimination of results which have little or no value and in the combination of the results which remain. Such principles, if they meet with general acceptance, will be of value, not only for the purpose stated but also as setting a certain standard which must be attained by future workers in this field, if their work is to be of permanent value.

The most important general principle which has been proposed for the combination of the results of different observers, is the one based on the mathematical discussion of accidental errors of observation. In accordance with the theory of probabilities, these results, if subject only to accidental errors, should be weighted in inverse proportion to their

 1 Presented in abstract at the N. Y. Meeting of the American Chemical Society, Dec. 28, 1906.